

CMSC	201	–	Computer	Science	I	for	Majors	 Page	1	

CMSC 201 Fall 2018
Python Coding Standards

The purpose of these coding standards is to make programs readable and maintainable. In
the “real world” you may need to update your own code more than 6 months after having
written the original – or worse, you might need to update someone else’s. For this reason,
every programming department has a set of standards or conventions that programmers
are expected to follow.

Neatness counts!

At UMBC, the following standards have been created and are followed in CMSC 201.

Part of every project and homework grade is how well these standards are followed.

It is your responsibility to understand these standards. If you have questions, ask any of
the TAs or the instructors.

Naming Conventions

• Use meaningful variable names!!
o For example, if your program needs a variable to represent the radius of a

circle, call it radius, not r and not rad.
o The use of obvious, common, meaningful abbreviations is permitted. For

example, ‘number’ can be abbreviated as num as in numStudents.
o The use of single letter variables is forbidden except in loops.

• Begin variable and function names with lowercase letters.

• Names of constants should be in all caps with underscores between words.

o e.g., EURO_TO_USD = 1.20 or MAX_NUM_STUDENTS = 100

• Separate “words” within identifiers with underscores or mixed upper and lowercase.
o e.g., grandTotal or grand_total
o Be consistent! If you choose to use mixed case (also known as “camel

case”), always use mixed case. If you choose to use underscores to
separate words, always use underscores.

• Do not use global variables! Use of global variables is forbidden.

CMSC	201	–	Computer	Science	I	for	Majors	 Page	2	

Use of Whitespace

The prudent use of whitespace goes a long way to making your program readable.
Horizontal whitespace (spaces between characters) will make it easier to read your code.
Vertical whitespace (blank lines between lines of code) will help you to organize it.

• Use blank lines to separate major parts of a program or function.
• Indentation should be 4 spaces long. Using Tab in emacs will accomplish this.
• Use spaces around all operators.

o For example, write x = y + 5, NOT x=y+5.
• Lines of code should be no longer than 80 characters (the default size of an emacs

window). Code that “wraps” around a line is difficult to read.

Line Length

Avoid lines of code longer than 80 characters, since they’re not handled well by many
terminals, and often make your code more difficult to read. If a line of your code is longer
than 80 characters, you may be doing too much in one line of code, or you may have
nested too deep with loops and conditionals.

If you have a line of code that is unavoidably longer than 80 characters, you can continue
the code on the next line by putting a “\” (backslash) after a breakpoint in the code (e.g.,
after a “+”, after a comma, etc.). If you’re using emacs, it will automatically indent the rest
of the line of code following the backslash.

For example:
 choice = int(input("Please enter a number between " + str(min
n) + " and " + str(maxx) + ", inclusive: "))

Can become:
 choice = int(input("Please enter a number between " + \
 str(minn) + " and " + str(maxx) + ", inclusive: "))

File Organization
The Python file itself should be organized, to make it easy to find specific functions or
information. From top to bottom, your Python files should have: 1) a full header comment,
2) any constants used by the program, 3) all functions other than main(), 4) the
definition of the main() function, and 5) the call to main() at the very bottom of the file.

CMSC	201	–	Computer	Science	I	for	Majors	 Page	3	

Use of Constants

To improve readability, you should use constants whenever you are dealing with hard-
coded values. Your code shouldn't have any “magic numbers,” or numbers whose
meaning is unknown. Your code should also avoid “magic strings,” or strings that have a
specific use within the program (e.g., choices a user could make such as “yes,” “STOP”,
etc.).

For example:
 total = subtotal + subtotal * .06
In the code above, .06 is a magic number. What is it? The number itself tells us nothing;
at the very least, this code would require a comment. However, if we use a constant, the
number's meaning becomes obvious, the code becomes more readable, and no comment
is required.

Constants are typically declared near the top of the program so that if their value ever
changes they are easy to locate to modify. Constants may be placed outside of the
main() function – this makes them global constants, which means everything in the file
has access to them. (Global variables are only allowed for constants!)

Here’s the updated code:

TAX_RATE = .06

def main():
 # lots of code goes here
 total = subtotal + subtotal * TAX_RATE
 # other code goes here
 print("Maryland has a sales tax rate of", TAX_RATE, "percent")
main()

CMSC	201	–	Computer	Science	I	for	Majors	 Page	4	

Comments

Programmers rely on comments to help document the project and parts of the project.
Generally, we categorize comments as one of three types:

1. File Header Comments
2. Function Header Comments
3. In-Line Comments

1. File Header Comments
Every file should contain a comment at the top describing the contents of the file and other
pertinent information. This "file header comment" MUST include the following information.

• The file name
• Your name
• The date the file was created
• Your section number
• Your UMBC e-mail address
• A brief description of the contents of the file

For example:

File: proj1.py
Author: Taylor Jones
Date: 11/16/2017
Section: 04
E-mail: tjones1@umbc.edu
Description:
This file contains python code that will simulate a run of
Conway's "Game of Life". It allows the user to choose
which cells to turn on, and how many iterations it runs.

CMSC	201	–	Computer	Science	I	for	Majors	 Page	5	

2. Function Header Comments
Every single function must have a header comment that includes the following:

• Function name
• A description of what the function does
• Input (name, type and short description)
• Output (name, type and short description)

For example:

circleArea() calculates the area of a circle from the radius
Input: radius; an int or float of the circle's radius
Output: area; a float of the circle's area
def circleArea(radius):
 area = PI * (radius ** 2)
 return area

The only function that does not require a header comment is the main() function.

3. In-Line Comments
In-line comments are comments within the code itself. They are normally comments for
the line(s) of code directly below them.

Well-structured code will be broken into logical sections that perform a simple task. Each
of these sections of code (often starting with an 'if' statement, or a loop) should be
documented.

• Any “confusing looking” code should also be commented.
• Do not comment every line of code. Trivial comments (e.g., # increment x)

clutter up your code and are worse than no comments at all.
• In-line comments are used to clarify what your code does, not how it does it.

An in-line comment appears above the code to which it applies. It is also indented to the
same level as the code it is a comment for; comments that are not correctly indented make
the code less readable.

For example:

go over the list of numbers given by the user
for num in userNumList:

 # if it's odd, print it, if it's even, do nothing
 if num % 2 == 1:
 print(num)

CMSC	201	–	Computer	Science	I	for	Majors	 Page	6	

Built-In Functions and Functionality

Python has many useful language features, built-in modules, and built-in functions that
easily let a programmer perform a variety of tasks. However, due to the introductory
nature of this course, you are not permitted to use any Python construct, built-in module,
or third-party library that is not explicitly covered in the lecture slides.

You are also not permitted to use anything that has not yet been covered in lecture.

Using a built-in function or functionality to solve a problem by having Python do the work
for you does not show that you have mastered the concepts behind it, and hence does not
fulfill the assignment. If we do not show you how to use it in class, you can assume that it
is off limits. If you find yourself unsure if you are allowed to use something, please consult
with a member of the CMSC 201 course staff for clarification.

Break and Continue

Using break, pass, or continue is not allowed in any of your code for this class. Using
these statements damages the readability of your code. Readability is a quality necessary
for easy code maintenance. Using of any of these will lead to an immediate deduction of
points.

